
JJMIE 
Volume 5, Number 3, June 2011 

ISSN 1995-6665 

Pages 255 - 259 

Jordan Journal of Mechanical and Industrial Engineering  

 

 

A Two-stage Artifitial Neural Network Model to Predict the 

Shrinkage of a Polystyrene Matrix Reinforced with  

Silica Sand and Cement. 

I. Jalham* 

Industrial Engineering Dept, Faculty of Engineering & Technology, University of Jordan, Amman 11942 Jordan.

                                                           
* Corresponding author. e-mail: jalham@ju.edu.jo 

 

Abstract 

Prediction of  the shrinkage for the manufacturing purposes of  composite  materials is not an easy task. The use of existing  
mathematical and statistical tools may help in solving part of the problem.On the other hand, artificial network tools are of a 
great importance too. In this investigation, a two-stage Artifitial neural network was used to predict the amount of shrinkage. 
Using an experimentally measured values of the shrinkage under different material and processing parameters to judge about 
the relevance of the developed model, it was found that the two-stage Artifitial neural network approach is more capable of 
predicting the shrinkage than the analytical models because the latter lacks consideration of the materials and processing 
variables. 
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1. Introduction 

Shrinkage is the change in size of the product due to 

thermal and other contractions. Its amount is dependent 

upon several factors such as the type of the used material, 

the type of the manufacturing process and the processing 

parameters. Moreover, the presence of the reinforcement, 

its volume fraction and size also affect shrinkage 

phenomenon especially when dealing with composite 

materials. As polymer processing requires temperature, 

shrinkage occuring due to thermal contraction has already 

been studied for homopolymers [Trznadel et al, 1992, 

Kozlov et al, 1998] and for composites [Beloshenko et al, 

2000; Krueger et al, 2003]. Beloshenko et al [2000] 

studied the the influence of heating temperature and 

extrusion ratio on the shrinkage of the isostatic 

polypropylene-ultra-high-molecular polyethelene (PP-

UHMPE) composite system. They concluded that the 

higher the temperature, the higher the shrinkage value 

while the higher the extrusion ratio, the higher the 

shrinkage until a ratio of 2 is reached. It was also observed 

in their work that the higher the content of the UHMPE in 

the system, the less the shrinkage value. Other factors such 

as the effect of light intensity on the shrinkage strain has 

been studied [Silikas et al, 2000]. It was found that the 

decrease in shrinkage strain values observed for low 

intensities. In our previous work [Jalham, 1999], a well-

established method of manufacturing for a polystyrene 

matrix reinforced with Jordanian Silica Sand and cement 

was reported.  The work in this field continued to cover the 

influence of material variables such as particle size (Z) and 

reinforcement content (S) in addition to the process 

parameters such as pressure (P) and cooling rate (C) and 

their interaction on the compressive load capacity of the 

manufactured composite [Jalham, 2003]. During the 

conduction of the experiments a shrinkage was observed 

among the specimens. To be able to predict the optimum 

size of the product, it was decided to study the effect of 

these materials and  processing variables on the amount of 

shrinkage. A rough estimate was achieved using a multiple 

regression model [Jalham, 2004]. Although it gave better 

predictions than those using the rule of mixture (analytical 

approach), but not satisfied enough. To come to a better 

prediction, it was decided to use the two-stage Artifitial 

neural network approach model. 

2. Theory 

2.1. Analytical approach: 

 

There are various methods to obtain composite properties. 

For example, the mechanics of materials method, the self 

consistent field method, the numerical technique method, 

and the variational calculus method [Meyers, 1999]. The 

latter focuses on the upper and lower limits of the 

properties and does not predict those properties directly. 

Only when the upper and the lower bounds coincide are 

particular properties determined. The relations of this 

technique are referred to as the “rule of mixtures”.  Thus a 

mathematical model to calculate the contraction in volume 

which expesses the shrinkage value can be developed as 

follows: 

 

Vsc = Voc  - Vc                                 (1) 

Where Vsc is the volume of the composite after 

processing, Voc is the volume of the composite before 
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processing,  and Vc is the volume difference of the 

composite before and after contraction. 

Formula 1 can be rewritten as : 

Vc = Voc  - Vsc                             (2) 

To find the relative change of volume of the sample 

(Vc/ Voc %), formula 2 should be divided by Voc 

resulting in   

 

Vc/ Voc  = 1  - Vsc/ Voc             (3) 

 

According to Edrees et al [1999]: 

 

Vsc = (1 - V/Vo)m (1-f) Voc  + Voc f                           (4) 

 

Where f is the volume fraction of the reinforcement and 

(1-f) is the volume fraction of the matrix. The subscript m 

denotes the matrix. 

Substituting formula 4 in formula 3 gives the shrinkage 

value as a relative change of volume of the sample: 

 

Vc/ Voc  = 1  - [(1 - V/Vo)m (1-f)  +  f]           (5) 

 

Vc/ Voc should be measured experimentally as a 

function of the material and processing variables and 

compared to the predictions of formula 5 above. 

 

2.2. Two-stage ANN approach: 

 

A neural network is an adaptable system that can learn 

relationships through repeated presentation of data and is 

capable of generalizing to new, previously unseen data. It 

is so powerful because it can learn any desired input-

output mapping if they have sufficient numbers of 

processing elements in the hidden layers. The artificial 

neural network used in this current work is a supervised 

multi-layer feedforward network trained with a standard 

back propagation algorithm [Kong et al, 1998]. It 

Computes changes to the weights in the final layer first, 

reuses much of the same computation to compute changes 

to the weight in the pre-ultimate layer, and ultimately goes 

back to the initial layer. Its idea is to make a large change 

to a particular weight if the change leads to a large 

reduction in the error observed at the output nodes. The 

three-layer network with one hidden layer that was used in 

this investigation is shown in figure1. The multiplayer 

perceptron were trained with backpropagation algorithm. 

The equation to update the weights in momentum learning 

is [Kong et al, 1998]: 

 

wij(n+1)=wij(n)+i(n)xj(n)+(wij(n)-wij(n-1))           (1) 

 

Where wij is the weight between nodes i and j at iteration 

n, i(n) is the local error which can be directly computed 

from the instantaneous error between the desired response 

and the system response. At the output processing 

elements or as a weighted sum of errors at the internal 

processing elements,  is step size, and  is the 

momentum and is set to a value between 0.1 and 0.9. 

The selection of training algorithm, stopping criteria 

and representative training set is the most important 

practical aspect related to training an ANN model.  The 

mean square error of the test set was used as the stopping 

criteria and to evaluate the performance of the training. 

The work was accomplished by using the MATLAB 

software facilities. Unlike other ANN approaches [Hwwu 

et al, 1996; Kong et al, 1998], this approach used the 

output of the previous training to be as input to the next 

one which was called in this investigation as two-stage 

ANN approach. 

3. Methodology 

To study the effect of each of the material and 

processing variables on the shrinkage value, three levels of 

each variable were considered as in [Jalham, 2003] and 

presented in Table 1. Three samples for each level were 

manufactured, because of the limited supply of the 

polystyrene raw material. The manufacturing of the 

samples was conducted according to the proposed 

methodology in [Jalham, 1999] and the results were 

presented in the form of curves that relates the relative 

change of volume of the sample (Vc/ Voc %) values that 

are measured experimentally as a function of each of the 

material and procssing variables. The samples were 

prepared in the form of cylinders of a diameter of  30 mm  

and a height of 30 mm.  

 

Table 1: Levels of independent variables. 

Variable Units Level 

  1 2 3 

Processing Variables 
    

   Pressure (P) 
KN 

4 5 6 

   Cooling rate( C) C /min 36 18 12 

Materials Variables 
    

   Sand percentage (S) % 5 25 50 

   Sand Particle Size (Z) Micron 60 75 85 

 

As the purpose of  this paper is to discover the 

capability of the two-stage ANN approach to predict the 

behavior of the polystyrene-base composites by comparing 

the results of the ANN predictions and the results of 

predictions by the regresion approach to some of the 

experimental results which were not used in the training of 

the network. The two-stage ANN methodology starts from 

the training of the ANN, shown in Figure 1, through the 

prediction of the behavior of the polystyrene matrix 

composite deformed under the same conditions and ending 

with using the output of the previous training to be as an 

input to the next stage of training. This approach helps in 

filtrating the data int the first stage before using it in the 

second one.  
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Figure1: The three–layer network with one hidden layer that was 
used in this investigation. 

 

The preparation of the training data set is related to the 

way the output vary with inputs and availability of 

experimental data. If the output varies with inputs in 

different ways as shown in Fig2 ( a & b), the training data 

used to generalise a model should be prepared differently. 

For the outputs which vary as in Fig (2b), it is  necessary 

to optimise the training data used. To optimise the training 

process, Kong [Kong et al, 1998] proposed a way to select 

the most represantative data while in this investigation the 

output of the previous training were used to be as input to 

the next one which was called in this investigation as 

filtrated ANN approach. 

 

 
Figure 2: The different ways of output variation with the inputs. 

4. Results and Discussions 

The experimental results of this work are shown in 

figures 3-6. They show the effect of each of the materials 

and processing parameters and their interaction on the 

shrinkage value which was taken as the relative change of 

volume of the sample (Vc/ Voc %). Figure 3 shows the 

dependence of shrinkage value as a relative change of 

volume of the sample on the sand content and its 

interaction with the particle size of the reinforcement 

material. It can be observed that the higher the 

reinforcement content, the less the shrinkage value and for 

the same content of the reinforcement the higher the 

particle size, also the less the amount of the shrinkage. 

This is due to the increase of the amount of the 

incompressible reinforcement. A good agreement of these 

results with what have been repoted by Beloshenko et al 

[2000] was found.  

 
Figure 3: Dependence of the shrinkage of the samples as a relative 
change of volume on reinforcement content. 

 

Figure 4 shows the dependence of shrinkage value on 

the pressure and its interaction with the cooling rate. It can 

be concluded from this figure that the higher the pressure, 

the higher the value of the shrinkage and for the same 

pressure the higher the cooling rate, the less the shrinkage. 

This is due to the increase of the degree of densification 

with the increase in the pressure during manufacturing. 

This is also in a good agreement with what have been 

repoted by Beloshenko et al [2000]. 

 
Figure 4: Dependence of the shrinkage of the samples as a relative 

change of volume on the pressure. 
 

Figure 5 shows the dependence of shrinkage value on 

the cooling rate and its interaction with the sand content. It 

is clear that the higher the cooling rate, the less the value 

of shrinkage which is in a good agreement with the 

behaviour of homopolymers reported in [Trznadel et al, 

1992, Kozlov et al, 1998] and for composites reported in 

[Beloshenko et al, 2000; Krueger et al, 2003]. This is due 

to the lower amount of time needed for solidification when 

using a high cooling rate processing. 
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Figure 5: Dependence of the shrinkage of the samples as a relative 

change of volume on the cooling rate. 

 

Figure 6  shows the dependence of shrinkage on the 

particle size and its interaction with the pressure vules. The 

figure indicates that the higher the particle size, the lower 

the shrinkage value although for the 85 micron particle 

size the 5 kN pressure shows lower shrinkage than at 5 and 

6 kN. This shows that an optimum interaction of the 

parameters may exist when using a 5 kN pressure during 

processing. 

 
Figure 6: Dependence of the shrinkage of the samples  as a 
relative change of volume on particle size. 

 

It is of a great importance to find a model that may 

predict the value of shrinkage. This helps in reducing the 

number of the experiments and gives an idea about the 

amount of the material needed to produce an intended 

product. Based on the developed model above, formula 5 

can be used to predict the shrinkage value. But the 

predictions using this formula may serve to predict the 

shrinkage value when the volume fraction of the 

reinforcement is the only variable. To be able to predict 

the shrinkage value when all the materials and processing 

values are taken into consideration, different approaches 

were used. In this investigation, analytical, multiple 

regression, and neural network approaches were of 

interest. MATLAB package was used as the main tool in 

this work. The shrinkage value was taken as the response 

variable and all other interactions where taken as the 

dependent variables. 

It was decided to adopt the two-stage ANN approach 

because the relative error of the predicted results after the 

second training stage is better than after the primary stage 

of training and less than 5%. 

A comparison between the model in formula 5, the 

regression model in [Jalham, 2004], and the experimental 

results are shown in figures 7-10. Figure 7 shows the 

results when the sand content is variable (S = 5, 25, 50 %) 

and the other variables were taken as constants with the 

following values: Z = 60 microns, P = 5 kN, C = 12 
oC/min .  The conditions for the calculations are presented 

under each figure.  The relative change of volume of the 

polystyrene matrix (V/Vo) was measured experimentally 

to be 26% and this is constant for calculation conditions. 

Then the value (1 - V/Vo)m  will be 74% and used for 

the calculations of formula 5 results. 

 
Figure 7: A comparison between the model in formula 5, the 

model in formula 6, and the experimental results when the sand 

content is variable (S = 5, 25, 50 %) and  Z = 60 microns, P = 5 

kN, C = 12 oC/min. 
 

 
Figure 8: A comparison between the model in formula 5, the 

model in formula 6, and the experimental results when the 
pressure is variable (P = 4, 5, 6 kN) and  Z = 75 microns, S = 

50%, C = 12 oC/min. 

 



 © 2011 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 5, Number 3  (ISSN 1995-6665) 

 

259 

 
Figure 9: A comparison between the model in formula 5, the 

model in formula 6, and the experimental results when the cooling 

6 kN, S = 5%. 
 

 
Figure 10: A comparison between the model in formula 5, the 

model in formula 6, and the experimental results when the particle 

4 kN, S = 50%. 

 

It is clear from these figures that the predictions using 

the two-stage ANN approach is better than using the 

multiple regression approach and better than using the 

analytical model developed (formula 5). This is because 

the model in formula 5 lacks the consideration of the 

conditions other than the reinforcement content. 

5. Conclusions 

As a result of this investigation, the following can be 

concluded : 

 

 The higher the reinforcement content and the particle 

size, the less the shrinkage. 

 The higher the pressure and the less the cooling rate, 

the higher the shrinkage. 

 The two-stage ANN approach is better than using the 

multiple regression approach and better than using the 

analytical model. 
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